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Abstract—This work explores the problem of Macgyvering
in robotic systems. “MacGyvering” is defined as creating or
repairing something in an inventive or improvised way by
utilizing objects that are available at hand. Macgyvering poses
a significant challenge since it requires robots that can simulta-
neously reason about the environment, objects, task goals and
the robot’s own capabilities. In this paper, we propose 6 levels of
Macgyvering that outline a spectrum of complexity within this
problem domain. We further discuss a computational framework
for Level 1 of the spectrum which involves the creation of tools
from available object parts. We implement our approach on a
robotic platform and present our preliminary results.

I. INTRODUCTION

Intelligence is often best expressed through ingenious prob-
lem solving, which has been a challenge for robots, but a
skill that humans depend on, especially in high-stress or
time constrained scenarios. The Apollo 13 incident of 1970
provides numerous examples of how human resourcefulness
and creativity helped save the lives of the 3 astronauts on board
[9]. To combat the increasing carbon dioxide levels within the
cabin, the crew fashioned a contraption for filtering carbon
dioxide out of a sock, a plastic bag, book covers and duct tape,
knowing only the properties of the available parts and the goal.
Our work envisions a robot that is co-located with humans like
these astronauts, capable of providing assistance with similarly
imaginative solutions. In our work, we explore the problem
of robot tool creation for the purpose of problem solving, or
Macgyvering. While tool-use is a widely explored problem
within robotics, tool creation has received much less attention.
To the best of our knowledge, this is the first work that
proposes a computational framework for tool Macgyvering
with its implementation on a robotic platform.

Tools are defined as objects that extend the physical in-
fluence of the agent or considered as extensions of the agent
[18]. Existing work in Psychology has shown that tool creation
emerges relatively late in children as compared to tool-use [6].
Their work posits that the actual tool creation in children is
preceded by the step of analyzing the problem and imagining
the tool suitable for the task. On this basis, we propose the
following high-level steps involved in Macgyvering:

o Problem Identification: This involves identifying the
problem and the desired effect the agent would like to
accomplish - for example, a screw needs to be tightened;

o Reference Tool Identification: Identifying a suitable
tool for accomplishing the desired effect - for example,
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Fig. 1: Affordances described as a relation between objects,
actions and effects.

screwdriver;

o Tool Macgyvering: If the reference tool is unavailable, a
tool that accomplishes the same effect needs to be created
from available parts

« Tool Evaluation: This involves attempting to solve the
problem with the Macgyvered tool and in case of failures,
iterating over the process to create the next best tool.

The steps detailed above indicate the importance of affor-
dances in Macgyvering. Affordances are the action possibili-
ties available to the agent for a given object [16]]; affordances
function by priming specific actions for the user by virtue of
the object’s physical properties. We seek to combine objects
and create tools that have certain affordances/produce certain
effects. The Macgyvered tool can act as a replacement for a
known item (eg. Macgyver a hammering object if hammer
is unavailable) or can be an entirely new combination of
items (eg. the contraption used on Apollo 13). Combinations
of such items can be decomposed into their individual parts,
each acting as a replacement for a known item eg. spacesuit
tubes serve as replacement for pipes. In this manner, the latter
problem can be decomposed to that of combining replacements
for known items.

In the following sections, we discuss the different levels of
Macgyvering and position our work with respect to existing
literature. We then provide a detailed discussion of our ap-
proach and conclude with the results and future directions for
our work.

II. LEVELS OF MACGYVERING

Affordances are often computationally defined as a relation-
ship between objects, actions and effects [20] (Figure [T). We
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use this definition as a basis for introducing a spectrum that
captures the varying degrees of Macgyvering complexity.

We define a reference tool as the “imagined” tool deemed
suitable for the task at hand. This is analogical to the ini-
tial steps of tool-making as described in the literature [6].
For example, screwdriver is the reference tool for tightening
screws. No Macgyvering is required if the reference tool is
directly available to the agent. In other cases, we introduce
the following 6 levels of Macgyvering (Levels 0-3 also shown
in Table [I):

o Level 0: The task goal/sub-goal, the effect and the action
for accomplishing it are all known, but the system needs
to identify a substitute for the reference tool. Eg. Knife
as substitute for screwdriver to “engage” and tighten a
screw. This is a simple case of object substitution.

o Level 1: The task goal/sub-goal, the effect and the action
for accomplishing it are all known, but there is no direct
substitute available. Thus, the robot needs to construct
a new tool that accomplishes the effect with the same
action. Eg. A clothespin and a coin combined to function
as a screwdriver to “engage” and tighten a screw.

o Level 2: The goal/sub-goal and the effect to be accom-
plished are same as above, but the action itself is different.
Hence, a new action (action adaptation) and tool for
accomplishing the desired effect must be identified. Eg.
Pliers can be used to “grasp” and turn a screw instead
of the “engage” and turn of a screwdriver. The effects of
both actions are the same, namely, tightening the screw.

o Level 3: The goal/sub-goal and the effect to be accom-
plished are retained but with action adaptation. Addi-
tionally, a tool should be constructed to accomplish the
desired effect. Eg. combine a spring and two sticks to
function as pliers to “grasp” and turn screws. This is
useful when the available objects cannot be combined
to create a screwdriver-like tool.

The more challenging extensions of these levels are as follows:

o Level 4: The goal/sub-goal is same as previous levels,
but the effect and action are different. This involves
identifying a tool that accomplishes a new effect but the
same goal/sub-goal. Eg. Using rope to attach parts rather
than tightening screws.

o Level 5: The goal/sub-goal is retained but the effect and
action towards accomplishing it are different. Addition-
ally, a tool must be constructed. Eg. Creating a rope from
strands of yarn.

Level 0 Macgyvering which is a case of object substitution,

Fig. 2: Examples of Superquadrics: Superellipsoids with vary-
ing parameters - Figure from [5]]

has been previously tackled in the robotics literature [1], [4]]. In
this paper, we focus on Level 1 Macgyvering which involves
the construction of tools from individual parts.

III. RELATED WORK
A. Tool Creation in Animals

Tool-making and use in animals has been widely studied.
Animals such as chimpanzees [8]], bonobos [27] and birds such
as rooks [7] and blue jays [L8] have been shown to create
and use simple tools to retrieve food. These are often cited as
examples of higher order cognition. In [6]], the authors identify
two key aspects of tool-making: “tool manufacturing” and
“tool innovation”. Tool manufacturing refers to the physical
transformation of the materials and is a necessary step in the
tool-making process. Whereas tool innovation, which refers to
imagining the type of tool suitable for the task, may not always
be involved. Our approach which begins by “imagining” a
reference tool followed by recreating it with objects that were
not seen before, thus tackles the combined problem of tool
innovation and tool manufacturing.

B. Object Substitution (Level 0 Macgyvering)

In this work we represent the tools using Superquadrics
[5]. Superquadrics (SQ) refer to the family of geometric
shapes that resemble quadrics but with the squaring opera-
tions replaced by arbitrary powers. Fig [2| shows examples of
Superellipsoids, one class of SQ. Prior research has looked at
modeling of objects using SQs [[10] and the SQ representation
of objects for pose recovery [13]]. More recently, work by [1]]
has looked at SQ fitting of tools for tool substitution. We draw
inspiration from their approach and use SQ fitting to represent
the reference tool. However, rather than identifying substitute
tools, we use SQs to guide the selection and attachment of
geometrically appropriate pieces for creating the reference
tool. Other approaches such as [24] have also tackled the
problem of identifying uncommon uses of tools using part-
based analysis.

C. Macgyvering in Robots

While there hasn’t been tremendous work within the area
of Robotic Macgyvering, some existing research has looked
at the use of environmental objects for solving tasks [25} [19].
Their work involved reasoning about the use of environmental
objects as simple machines eg. levers. More recently, Choi et
al. [11]] proposed a framework for creating and using hybrid
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Fig. 3: Proposed Computational Model for a Macgyvering
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this paper. The Macgyvering module in this work implements
Level 1 Macgyvering

tools within the cognitive architecture ICARUS. While the
high-level goal of our respective works coincide, we take a
more vision-based perspective to tackling the problem and
present our framework on a robotic platform. However, we
believe that a combination of the two approaches may be
essential for a good MacgyverBot.

Additionally, recent work has also proposed the “Macgyver
Test” for assessing the resourcefulness of robots [23]. This test
proposes to assess the creativity of robots in problem solving,
Macgyvering being a key example of human creativity.

IV. OVERVIEW OF THE HIGH-LEVEL PIPELINE

In this section, we discuss the overview of our framework
to highlight how Macgyvering fits in with the bigger picture
of task planning. Shown in Figure [3]is our high-level process
flow consisting of 3 main subsystems. Highlighted in red are
the parts discussed in this paper. The 3 subsystems are:

o Sensory Inputs: This subsystem collects sensory inputs
including information about the environment (objects
and robot states), the task goal and the robot’s own
capabilities.

o High-Level Task Planning: This subsystem deals with
the high-level task planning. This involves formulating
the planning problem which may involve generation of
domain and problem definitions followed by attempt-
ing to solve the problem. There are several existing
approaches to high-level task planning ([26], [21]) that
can be applied here. In cases where certain objects are
required to complete the task, eg. the hammer action
requires an appropriate object, their absence causes the
solver to fail. Identifying the cause of failure in terms of
missing action/effect can be achieved using approaches
such as [17] and [28]] on plan repair. This information
guides the Macgyvering process.

o Macgyvering: This subsystem is activated in the case
of a solver failure. The Macgyvering module (Figure [)
reasons about the missing action/effect and identifies if
any prior known tools allow the desired action/effect to
be accomplished (i.e, has the desired affordance). In such
cases, the module proceeds to Macgyver the object. Once
the tool is created, the planning domain can be updated

with the information and the Planning system can attempt
to replan for the task.

We explain our high level framework in the context of an
example. The robot wishes to escape a building by construct-
ing a staircase to reach an elevated area leading to the exit. The
task planner, takes in all the relevant information and attempts
to plan for the escape. However, the planning fails since the
robot is unable to reach the elevated area. This missing action
or effect is passed into the Macgyvering module. The module
then outputs a solution that involves constructing a staircase
using blocks of wood available to the robot. After constructing
the staircase, the updated information allows the planner to re-
plan and accomplish the task.

This paper focuses on how the Macgyvering module accom-
plishes the tool creation. Our future work looks at integrating it
with the remainder of the high level framework including rea-
soning about planning failures and subsequent re-formulation
of the problem.

V. MACGYVERING MODULE: LEVEL 1 MACGYVERING

In this section, we discuss our implementation of Level 1
Macgyvering. Inspired by existing literature on tool-making,
there are two key aspects incorporated into our system:

o Reference Tool: As described in [6]], tool-making in-

volves the prior step of imagining the appropriate tool for
a task and we incorporate this idea using the reference
tool that guides the Macgyvering process.

o Generate and Test Paradigm: Tool-making in children
develops through trial-and-error approaches before the
age of 7, after which they are able to construct tools from
anticipation [6]. Hence, Maccgyvering can be considered
an iterative process involving generation and testing of
different solutions, starting with the best evaluated solu-
tions. Such approaches are often cited in the Computa-
tional Creativity literature [3], wherein the system first
generates an artifact and then evaluates its “goodness”
via an iterative process that yields a satisfactory artifact.
We use a similar approach where the robot tests different
possibilities and iterates on the design if needed.

Macgyvering may involve reasoning about various aspects
of objects such as geometric and material properties. In this
paper we focus on reasoning using geometric properties of
objects and formulate our problem as follows:

“Given a reference tool and a set of environmental objects,
can the robot construct a substitute tool by reasoning using
geometric properties?”’

Figure 4] shows the complete Macgyvering module for
tackling this problem. In addition to using SQ fitting to
represent tools, our work involves reasoning about atfachment
points. These refer to points where objects can be attached
to one another. In most cases of Macgyvering, humans often
use Duct tape or glue to put together pieces. However, certain
objects such as bottles may provide natural attachment points
at the bottle opening where a suitable sized object can be
inserted. In our work, we use magnets to emulate attachment
points.



SENSORY I/P

REFERENCE TOOL ID AND SEGMENTATION SQ FITTING
o Identify - SQ Fit to sets il
Missing Segment to SQ Fitting to of objects
- Reference  [— \ . N
action, effect Tool key parts TNy parts (sum of fitting &
Segmented errors) @
point cloud of
reference tool SQ fitted to each part ’
il 1__4___‘_____7 Environmental
| ; i i
» o ! / # 3 : ob_/elct Zomt
Ranked sets of objects | B | | & clouds
& M P&V
L_?__J___I___L_§___'
v
" External ). S ! .
Success: ) | Internal Evaluation
Evaluation \ ) )
New tool + (test the ’ Tool (relative scaling and
Action + ) Manufacturing | ! attachment point
Macgyvered 1 )
Effect . | evaluation)
tool) I __ e o ___ 1
Ranked parts, oriented
Failure: Retrieve next best solution

EVALUATION

o 1
ol broke: Failed

external evaluation

Fig. 4: Computational pipeline for the Level 1 Macgyvering module: The example shows construction of a hammer. Based
on the missing action/effect, a reference tool is identified, followed by SQ fitting to object parts and finally the internal and

external evaluation of the tool.

We now discuss the different steps involved in the Mac-
gyvering module in the following sections.

A. Reference Tool Identification and Segmentation

The first step involves identifying a reference tool that
helps accomplish the task. We currently provide this mapping
from the desired affordance to the appropriate tool, although
approaches such as AffordanceNet [12] can accomplish this.
Once the reference tool is identified, we obtain its segmented
point cloud representation. In our case, we directly use the
ToolWeb dataset [2] which contains 116 pre-segmented point
clouds of various household tools and objects. The segmented
point cloud of the reference tool is relayed to the next step.

B. Superquadric Fitting

For SQ fitting, we use the approach detailed in [1]]. We fit
SQ separately to each of the reference tool segments using
Levenberg-Marquardt optimization. The SQs are modeled us-
ing 13 parameters: 3 for scale in each dimension, 2 for shape
variance, 3 for Euler angles, 2 for tapering parameters and 3
for the central point/mean. For optimization, we use the inside-
outside function, F'(x,y, z; \) where A is the set of parameters.
For points inside the SQ, F' < 1; for points on the SQ, F' =1
and F' > 1 for points outside the SQ. This results in the
following minimization problem:

arg min, Zf;l(F(x, y,2;\) —1)2

This optimization is repeated for different classes of SQs
and the SQ with the lowest residual error for each part of the
reference tool is chosen as the best representation for that part

(superellipsoids are the best fit for both hammer handle and
head as shown in Fig @).

Following SQ fitting for the reference tool, our approach
retrieves the point clouds corresponding to the environmental
objects. We use RGBD sensors and perform plane subtraction
and segmentation of the input point cloud to identify the point
cloud segments corresponding to each object (Fig [] Sensory
I/P). Subsequently, it fits the classes of SQs representing the
reference tool parts (superellipsoids in this case) to each of
them. Each of the parts are evaluated for their match to
each segment of the reference tool. For n objects and k&
tool segments, this leads to k * n fittings. Hence, an implicit
assumption of our approach is that the number of object parts
required equals the number of reference tool segments. In the
case of tools, k£ = 2 since most tools only have an action and a
grasp part. We use O to denote the pairs/sets of objects being
considered for each part of the tool, i.e, O = 01, 02...05. This
leads to k x (Z) possibilities for O. The total residual fitting
error associated with any given O is computed as sum of the
residual errors of its components:

Eresidual (O) = Z?:l Tes(oi)
Where, res(o;) refers to the residual fitting error of object
0;. This computation is performed for all the possible sets of
objects O and passed on for subsequent evaluation.

C. Evaluation

The evaluation module involves both intrinsic/internal and
extrinsic/external evaluation. The considerations here are:

o Are the objects appropriately shaped?



o Are they proportional in scaling when compared to the
reference tool proportions?

o Do they have attachment points facilitating the desired
attachment?

e Does the tool work in the real world?

1) Intrinsic Evaluation: This evaluation deals with the first
3 considerations. The system first computes the relative scale
ratios between different segments of the reference tool. A good
set of candidate parts should have a similar scale ratio. For eg,
the handle of a hammer may be twice as long as the hammer
head. To encode this aspect, we compute the ratio of the scales
for pairs of reference tool segments along each dimension and
sort it, resulting in a 3D vector denoted by rel(ref)). Sorting
removes dependency of the ratio on the specific dimension. We
repeat the process with the objects o; € O to obtain rel(O)
and compute the norm of the difference between rel(ref) and
rel(O):

eratio(0) = [[rel(ref) — rel(O)]

Next, the system retrieves the relative SQ orientations be-
tween the different segments of the reference tool. The system
also retrieves the positions of the attachment points of the
candidate point clouds (indicated by AR tags) relative to their
mean/centroid. Each object point cloud in the set O is oriented
according to the relative orientations of the reference tool parts
(Fig [] Internal Evaluation). The system then checks for the
distance of the closest attachment point from the point cloud
attachment location, denoted by AttDist(o;). This indicates
a measure of whether there are attachment points near the
desired attachment location:

ears(0) = S AttDist(o;)
In effect, this checks if any attachment points on the objects
facilitate their desired attachment and score them accordingly.

The final total error for each set of parts is computed as the
sum total of all the different errors:
efinal(o) = eresidual(o) + €qtt (O) + eratio(O)

The set of pieces with the lowest ef;nq; is chosen as the
best set of parts to combine along with their corresponding
attachment points.

While the system makes the best judgment based on the
reference tool, the results may be prone to errors resulting
in incorrect part selection. Additionally, the physical object
attachments may be weak and cannot be encoded in the
intrinsic evaluation. Thus, it would be beneficial to have
the robot evaluate the output by physically constructing and
attempting to use the tool in the real world.

2) Extrinsic Evaluation: Given the set of parts and their
attachment points chosen by intrinsic evaluation, the robot
manufactures the tool by joining the pieces. The robot then
evaluates the constructed tool for its task suitability by ap-
plying the desired action on the tool eg. in the case of
Macgyvering a hammer, the robot attempts to hammer with
the new object. We assume that the robot is provided with the
appropriate action trajectory for using the object although it
can be learned through demonstrations [22] or even adapted

T iy

Fig. 5: Robot workspace showing the 4 different pieces (A.
through D.) each with an attachment point. The AR tags are
only used to identify the attachment point locations.
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Fig. 6: Left to right are the highest to lowest ranked close
matches for a hammer based on internal evaluation

from a source trajectory to fit the modified tool ([14]], [15]).
When performing the action with the constructed tool, if
the tool breaks or fails to accomplish the task, the system
identifies the next appropriate set of objects O based on e f;y,q1
and creates a new tool for testing. Thus, the cycle between
intrinsic and extrinsic evaluation allows the robot to explore
and evaluate different tool-making possibilities.

VI. RESULTS

In this section we demonstrate our framework on a robotic
platform. We created an experimental setup using 4 different
object parts each with an attachment point as shown in Fig [3
These parts allow for 12 different potential part combinations,
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Fig. 7: Experimental setup of the robot: The reference tool point cloud was provided. The robot observed the objects in its
environment (object point clouds) and constructed a hammer. The first construction failed (top right) and the robot created a
different hammer which succeeded the hammer test (bottom right). The Macgyvered objects are shown alongside.

3 of which closely resemble a hammer. Fig|[6] shows the ranked
part combinations along with their corresponding e f;,4; val-
ues. Of the 3, one closely fits both the shape and size but has a
weak attachment point causing it to break when attempting to
hammer (left); The middle pair is not a close geometric match
for the hammer head since it has a protrusion on that piece,
but the pair match closely in terms of relative ratio of scales
and also have a strong attachment point; the third one does not
closely match the size proportions and has a weak attachment.
Hence, from a pure geometric perspective, the first hammer
is a better fit, but with respect to task execution as well,
the second hammer is most appropriate. Thus, as expected,
internal evaluation identifies the former as the best candidate
which is only pruned by the external evaluation of the tool.

Shown in Fig[7](middle) is the complete experimental setup.
The robot was provided with a segmented 3D scan of a ham-
mer which served as the reference tool. After observing the
different object point clouds, our algorithm identifies the best
pair of objects to use. The system then relays this information
to the robot which proceeds to connect the individual parts
to create the hammer shown in Fig |6 (leftmost) using parts A
and D. It then proceeds to test the Macgyvered hammer which
breaks due to the weak attachment point Fig [7] (top right).
The robot then creates the next best solution shown in Fig [f]
(middle) using parts A and C which has a strong attachment
point. Upon testing the hammer, it retains its stability and
the robot is able to execute the hammering action (Fig [7] -
bottom right). Once a successful solution is found, the robot
can proceed with the remainder of the task.

VII. CONCLUSION AND FUTURE WORK

In this paper, we’ve discussed the problem of Macgyvering
in robots to increase their resourcefulness. We introduced

a spectrum of complexity highlighting the different levels
of Macgyvering and presented a computational framework
that allows the robot to reason about and construct tools
from individual pieces. While our work focused on tools, the
approach is applicable to non-tool objects as well since the
reference object used in Macgyvering does not have to be a
tool. Similarly, testing such objects involve checking whether
they accomplish the desired effect. For eg. a Macgyvered
shelter should protect from the rain.

Macgyvering presents a challenging problem for robots and
numerous issues remain to be addressed. Our future work aims
to tackle some of the problems such as:

« Integrating the Macgyvering module with high-level task

planning;

« Reasoning about the task goals and robot capabilities

when creating new objects;

« Reasoning about other aspects of the domain and material

properties of objects;

o Implementing the additional levels of Macgyvering and

reasoning about the appropriate level for a given problem;

ACKNOWLEDGMENTS

This work is supported in part by NSF IIS 1564080 and
ONR N000141612835.

REFERENCES

[1] Paulo Abelha, Frank Guerin, and Markus Schoeler. A
model-based approach to finding substitute tools in 3d
vision data. In Robotics and Automation (ICRA), 2016
IEEE International Conference on, pages 2471-2478.
IEEE, 2016.

[2] Paulo Abelha Ferreira and Frank Guerin. Learning how
a tool affords by simulating 3d models from the web.



(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

In Proceedings of IEEE International Conference on
Intelligent Robots and Systems (IROS 2017). IEEE Press,
2017.

Margareta Ackerman, Ashok Goel, Colin G Johnson,
Anna Jordanous, Carlos Leén, Rafael Pérez y Pérez,
Hannu Toivonen, and Dan Ventura. Teaching compu-
tational creativity. In Proceedings of the Eighth Interna-
tional Conference on Computational Creativity, ICCC,
Atlanta, 2017.

Alejandro Agostini, Mohamad Javad Aein, Sandor Szed-
mak, Eren Erdal Aksoy, Justus Piater, and Florentin
Wiirgiitter.  Using structural bootstrapping for object
substitution in robotic executions of human-like ma-
nipulation tasks. In Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on,
pages 6479-6486. IEEE, 2015.

Alan H Barr. Superquadrics and angle-preserving trans-
formations. IEEE Computer graphics and Applications,
1(1):11-23, 1981.

Sarah R Beck, Ian A Apperly, Jackie Chappell, Carlie
Guthrie, and Nicola Cutting. Making tools isnt childs
play. Cognition, 119(2):301-306, 2011.

Christopher D Bird and Nathan J Emery. Insightful
problem solving and creative tool modification by cap-
tive nontool-using rooks. Proceedings of the National
Academy of Sciences, 106(25):10370-10375, 2009.
Christophe Boesch and Hedwige Boesch. Tool use and
tool making in wild chimpanzees. Folia primatologica,
54(1-2):86-99, 1990.

Stephen Cass. Apollo 13, we have a solution.
Spectrum On-line, 04, 1, 2005.

Laurent Chevalier, Fabrice Jaillet, and Atilla Baskurt.
Segmentation and superquadric modeling of 3d objects.
2003.

Dongkyu Choi, Pat Langley, and Son Thanh To. Creating
and using tools in a hybrid cognitive architecture. 2018.
Thanh-Toan Do, Anh Nguyen, and Ian Reid. Affor-
dancenet: An end-to-end deep learning approach for
object affordance detection. In International Conference
on Robotics and Automation (ICRA), 2018.

Kester Duncan, Sudeep Sarkar, Redwan Algasemi, and
Rajiv Dubey. Multi-scale superquadric fitting for efficient
shape and pose recovery of unknown objects. In Robotics
and Automation (ICRA), 2013 IEEE International Con-
ference on, pages 4238-4243. IEEE, 2013.

Tesca Fitzgerald, Ashok K Goel, and Andrea L. Thomaz.
Representing skill demonstrations for adaptation and
transfer. In AAAI Symposium on Knowledge, Skill, and
Behavior Transfer in Autonomous Robots, 2014.

Pawel Gajewski, Paulo Ferreira, Georg Bartels,
Chaozheng Wang, Frank Guerin, Bipin Indurkhya,
Michael Beetz, and Bartlomiej Sniezynski. Adapting
everyday manipulation skills to varied scenarios. arXiv
preprint arXiv:1803.02743, 2018.

James J Gibson. Perceiving, acting, and knowing: Toward
an ecological psychology. The Theory of Affordances,

IEEE

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

pages 67-82, 1977.

Kristian J Hammond. Explaining and repairing plans that
fail. Artificial intelligence, 45(1-2):173-228, 1990.
Thony B Jones and Alan C Kamil. Tool-making and
tool-using in the northern blue jay. Science, 180(4090):
1076-1078, 1973.

Martin Levihn and Mike Stilman. Using environment
objects as tools: Unconventional door opening. In Intel-
ligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, pages 2502-2508. IEEE,
2014.

Manuel Lopes, Francisco S Melo, and Luis Montesano.
Affordance-based imitation learning in robots. In Intel-
ligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on, pages 1015-1021. IEEE,
2007.

Christopher Lorken and Joachim Hertzberg. Grounding
planning operators by affordances. In International
Conference on Cognitive Systems (CogSys), pages 79—
84. Citeseer, 2008.

Muhammad Asif Rana, Mustafa Mukadam, S Reza Ah-
madzadeh, Sonia Chernova, and Byron Boots. To-
wards robust skill generalization: Unifying learning from
demonstration and motion planning. In Conference on
Robot Learning, pages 109-118, 2017.

Vasanth Sarathy and Matthias Scheutz. The macgyver
test-a framework for evaluating machine resourceful-
ness and creative problem solving. arXiv preprint
arXiv:1704.08350, 2017.

Markus Schoeler and Florentin Worgotter. Bootstrapping
the semantics of tools: Affordance analysis of real world
objects on a per-part basis. [EEE Transactions on
Cognitive and Developmental Systems, 8(2):84-98, 2016.
Mike Stilman, Munzir Zafar, Can Erdogan, Peng Hou,
Saul Reynolds-Haertle, and Gregory Tracy. Robots using
environment objects as tools the macgyver paradigm
for mobile manipulation. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pages
2568-2568. IEEE, 2014.

Jaeyong Sung, Bart Selman, and Ashutosh Saxena.
Synthesizing manipulation sequences for under-specified
tasks using unrolled markov random fields. In Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ Inter-
national Conference on, pages 2970-2977. IEEE, 2014.
Nicholas Toth, Kathy D Schick, E Sue Savage-
Rumbaugh, Rose A Sevcik, and Duane M Rumbaugh.
Pan the tool-maker: investigations into the stone tool-
making and tool-using capabilities of a bonobo (pan
paniscus). Journal of Archaeological Science, 20(1):81—
91, 1993.

Roman Van Der Krogt and Mathijs De Weerdt. Plan
repair as an extension of planning. In /CAPS, volume 5,
pages 161-170, 2005.



	Introduction
	Levels of Macgyvering
	Related Work
	Tool Creation in Animals
	Object Substitution (Level 0 Macgyvering)
	Macgyvering in Robots

	Overview of the High-Level Pipeline
	Macgyvering Module: Level 1 Macgyvering
	Reference Tool Identification and Segmentation
	Superquadric Fitting
	Evaluation
	Intrinsic Evaluation
	Extrinsic Evaluation


	Results
	Conclusion and Future Work

