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I. INTRODUCTION

The concept of affordances [[I]] has gained increasing interest
in robotics because it enables to ground environment represen-
tations by encapsulating proprioception and exteroception in
the same framework. The recent work by Zech et al. [[7] shows
the variety of approaches and contexts affordances have been
studied in. However most authors use predefined features to
describe the environment. We argue that building affordances
on predefined features is actually defeating their purpose, by
limiting them to a given subspace. Similarly to Nguyen et
al. [3] and Mahler et al. [2], we propose here a method
for enabling a robot to discover affordances while learning
features. but with the notable difference that the exploration
and training are done in reality and not in simulation.

II. APPROACH

We adopt the formalism of Sahin et al. [5]], in which an
affordance is represented as a triplet (e, (a,0)), such that the
effect e is generated when action a is exerted on object o.

In most approaches objects are described by a predefined
set of features. However we affirm the impracticability of
predefining a set of features general enough to describe
objects in open-ended environments. Instead, we propose an
approach to enable the robot to build features relevant to its
environments and its capabilities by itself.

In order to decide when to build new features, we propose
the concept of ambiguity, defined as follows: whenever the
agent executes the same action on two apparently similar
objects (regarding the current used features), but does not
observe the same effect, it has to assume that it does not
possess the relevant features to distinguish those objects in
regard of this action, hence it needs to learn these features.

In order to learn these new descriptors, we use convolutional
neural networks (CNN), for their ability to detect regularities
in high dimensional spaces (in our case 2D images) and
extract features. Furthermore CNNs enable to transfer learning
between networks. Hence we can pretrain the network on
another classification task, and then quickly train it on the
real situation. In this work, we test two different networks, a
VGGI6 [6] pretrained on imagenet, and an eight convolutional
layers network (8conv) pretrained on a custom smaller dataset
(= 14000 images from 22 classes).

The affordance is learned by training a multiple layer
perceptron (MLP) to predict a discrete effect given discrete
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Fig. 2: Ambiguity reduction workflow.

objects descriptors values. Figure [I shows the global architec-
ture of the method, while figure [2] illustrate the reduction of
the ambiguity by the construction of a new feature.

III. EXPERIMENTS

In order to demonstrate our method we designed two
experiments, in which the system would have to build new
features to be able to properly learn an affordance.

Both setups consists in an interaction loop where the robot
uses a predefined action to explore a set of objects. The actions
and object sets are constructed so that different effects will be
produced, therefore requiring the robot to classify objects in
regard of those effects. We purposefully give a limited initial
feature set to describe objects (color and size), to force the
agent to build new ones.

Objects are perceived using a kinect v2 RGB-D camera,
using method shown in [3]



Fig. 3: From left to right, raw point cloud, supervoxels
oversegmentation [4], clusters of locally convex supervoxels.

The first setup consists of a set of 37 various objects fa
some possessing wheels or of spherical shapes (rolling), some
others not (non-rolling). The action is poke. The second setup
consists of a set of 44 objects of various sizes, textures, colors,
shapes and either textured or non-textured [#b] We arbitrarily
fix the non-textured ones (non-movable) while textured ones
are (movable). The action is push.

Fig. 4: Examples from objects sets, (a) rollable / non-rollable,
(b) movable / non-movable.

IV. RESULTS

Ambiguity detection is implemented as follows: is consid-
ered ambiguous a state in which the training remains under-
performing (less than 20% better than the random policy)
during 5 training steps. Training starts with only the color
and size features, fails to learn the affordance after 5 steps,
then proceed to construct a new one by instantiating a CNN.
The training of the CNN is done using the method described
in 2} The training dataset consists of ten objects at first epoch,
then one object is added at each following step. Performance is
evaluated on the remaining (unseen) objects. Experiments are
done ten times, randomizing selection of objects. Averaged,
maximum and minimal performance per epoch are presented
in figure [5b| and [5a

The VGGI6 network, being pretrained on a larger dataset,
globally outperforms the Sconv. However the 8conv is still
able to reach a very close performance, especially on the
”push” task where the “texture” feature may not preexist in the
pretrained VGG16. This Implies that it is possible to bootstrap
our method without requiring a huge pretraining dataset, and
that the features can indeed be learned on the real robotic task.
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(a) Poking experiment, prediction accuracy over 15 training steps.
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(b) Pushing experiment, prediction accuracy over 10 training steps.
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